Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 22(1): 190, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017545

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive subtype that exhibits a high incidence of distant metastases and lacks targeted therapeutic options. Here we explored how the epigenome contributes to matrix metalloprotease (MMP) dysregulation impacting tumor invasion, which is the first step of the metastatic process. METHODS: We combined RNA expression and chromatin interaction data to identify insulator elements potentially associated with MMP gene expression and invasion. We employed CRISPR/Cas9 to disrupt the CCCTC-Binding Factor (CTCF) binding site on an insulator element downstream of the MMP8 gene (IE8) in two TNBC cellular models. We characterized these models by combining Hi-C, ATAC-seq, and RNA-seq with functional experiments to determine invasive ability. The potential of our findings to predict the progression of ductal carcinoma in situ (DCIS), was tested in data from clinical specimens. RESULTS: We explored the clinical relevance of an insulator element located within the Chr11q22.2 locus, downstream of the MMP8 gene (IE8). This regulatory element resulted in a topologically associating domain (TAD) boundary that isolated nine MMP genes into two anti-correlated expression clusters. This expression pattern was associated with worse relapse-free (HR = 1.57 [1.06 - 2.33]; p = 0.023) and overall (HR = 2.65 [1.31 - 5.37], p = 0.005) survival of TNBC patients. After CRISPR/Cas9-mediated disruption of IE8, cancer cells showed a switch in the MMP expression signature, specifically downregulating the pro-invasive MMP1 gene and upregulating the antitumorigenic MMP8 gene, resulting in reduced invasive ability and collagen degradation. We observed that the MMP expression pattern predicts DCIS that eventually progresses into invasive ductal carcinomas (AUC = 0.77, p < 0.01). CONCLUSION: Our study demonstrates how the activation of an IE near the MMP8 gene determines the regional transcriptional regulation of MMP genes with opposing functional activity, ultimately influencing the invasive properties of aggressive forms of breast cancer.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Cromatina , Metaloproteinase 8 da Matriz/genética , Neoplasias de Mama Triplo Negativas/genética , Recidiva Local de Neoplasia/genética , Família Multigênica
2.
Front Virol ; 32023.
Artigo em Inglês | MEDLINE | ID: mdl-37886042

RESUMO

Introduction: Despite advancements in hepatitis C virus (HCV) infection treatment, HCV still represents a significant public health burden. Besides progressive hepatic damage, viral persistence has lasting effects on innate and adaptive immune responses. Lack of a complete understanding of the factors driving an effective HCV response contributes to the failure to develop a vaccine for prevention. This study advances the existing knowledge on HCV-specific CD8+ T cells and describes the impact of current or past HCV infection on CD8+ T cells specific for other viruses. Methods: We used barcoded-dextramers to identify and sort CD8+ T cells specific for HCV, cytomegalovirus, and influenza, and characterized them using single-cell RNA sequencing technology. Our cohort included chronic (cHCV), spontaneously resolved (rHCV), and subjects undergoing direct-acting antiviral (DAA) therapy. Results: We show that HCV-specific CD8+ T cells have cytotoxic features in patients with cHCV, which is progressively reduced with DAA therapy and persists 12 weeks after treatment completion. We also observe a shift in the CD8+ T cell phenotype on DAA treatment, with decreased effector memory and exhausted cell signatures. In rHCV, we also detected a smaller proportion of effector memory cells compared to cHCV. The proportion of CD8+ exhausted T cells in cHCV and rHCV subjects was comparable. Moreover, we also observed that non-HCV virus-specific CD8+ T cells exhibit robust cytotoxic traits during cHCV infection. Discussion: Altogether, our findings suggest that cHCV infection promotes cytotoxicity in CD8+ T cells regardless of virus specificity. The immunological changes caused by cHCV infection in CD8+ T cells may contribute to worsening the ongoing hepatic damage caused by HCV infection or exacerbate the immune response to possible co-infections. Our data provide a resource to groups exploring the underlying mechanisms of HCV-specific T cell spontaneous and treatment-induced resolution to inform the development of effective vaccines against HCV infection.

3.
Commun Med (Lond) ; 3(1): 93, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430006

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICI) improve clinical outcomes in triple-negative breast cancer (TNBC) patients. However, a subset of patients does not respond to treatment. Biomarkers that show ICI predictive potential in other solid tumors, such as levels of PD-L1 and the tumor mutational burden, among others, show a modest predictive performance in patients with TNBC. METHODS: We built machine learning models based on pre-ICI treatment gene expression profiles to construct gene expression classifiers to identify primary TNBC ICI-responder patients. This study involved 188 ICI-naïve and 721 specimens treated with ICI plus chemotherapy, including TNBC tumors, HR+/HER2- breast tumors, and other solid non-breast tumors. RESULTS: The 37-gene TNBC ICI predictive (TNBC-ICI) classifier performs well in predicting pathological complete response (pCR) to ICI plus chemotherapy on an independent TNBC validation cohort (AUC = 0.86). The TNBC-ICI classifier shows better performance than other molecular signatures, including PD-1 (PDCD1) and PD-L1 (CD274) gene expression (AUC = 0.67). Integrating TNBC-ICI with molecular signatures does not improve the efficiency of the classifier (AUC = 0.75). TNBC-ICI displays a modest accuracy in predicting ICI response in two different cohorts of patients with HR + /HER2- breast cancer (AUC = 0.72 to pembrolizumab and AUC = 0.75 to durvalumab). Evaluation of six cohorts of patients with non-breast solid tumors treated with ICI plus chemotherapy shows overall poor performance (median AUC = 0.67). CONCLUSION: TNBC-ICI predicts pCR to ICI plus chemotherapy in patients with primary TNBC. The study provides a guide to implementing the TNBC-ICI classifier in clinical studies. Further validations will consolidate a novel predictive panel to improve the treatment decision-making for patients with TNBC.


Triple-Negative Breast Cancer (TNBC) is an aggressive type of breast cancer, responsible for a substantial burden of breast cancer-related deaths. In recent years, immunotherapy, a therapy that triggers the patient's immune system to attack the tumor, has arisen as a promising treatment in various cancers, including TNBC. However, a subset of patients with TNBC does not respond to this treatment. Here, we employed advanced computational techniques to predict response to immunotherapy plus chemotherapy in patients with primary TNBC. Our method is more accurate than using other existing markers, such as PD-L1, but is not very accurate in patients with non-TNBC breast cancers or non-breast cancers. This method could potentially be used to better select patients for immunotherapy, upfront, avoiding the side effects and costs of treating patients in which immunotherapy might not work.

4.
Front Immunol ; 14: 1112870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006263

RESUMO

Introduction: In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre- existing co-morbidities correlating to incidence to severe COVID-19 are associated with chronic airway neutrophilia. Furthermore, examination of COVID-19 explanted lung tissue revealed a series of epithelial pathologies associated with the infiltration and activation of neutrophils, indicating neutrophil activity in response to SARS-CoV-2 infection. Methods: To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory responses to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. This model was infected with live SARS-CoV-2 virus the epithelial response to infection was evaluated. Results: SARS-CoV-2 infection of airway epithelium alone does not result in a notable pro-inflammatory response from the epithelium. The addition of neutrophils induces the release of proinflammatory cytokines and stimulates a significantly augmented proinflammatory response subsequent SARS-CoV-2 infection. The resulting inflammatory responses are polarized with differential release from the apical and basolateral side of the epithelium. Additionally, the integrity of the \epithelial barrier is impaired with notable epithelial damage and infection of basal stem cells. Conclusions: This study reveals a key role for neutrophil-epithelial interactions in determining inflammation and infectivity.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Células Epiteliais , Sistema Respiratório , Inflamação
5.
Front Immunol ; 14: 1137034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063898

RESUMO

The natural killer (NK) cell population is a critical component of the innate immune compartment of the liver, and its functions are deeply affected by the surrounding environment. In the late stage of fibrosis, NK cells become dysfunctional, but the influence of disease etiology on NK cell behavior during cirrhosis remains unclear. Using single-cell RNA sequencing (scRNA-seq), we characterized the hepatic NK cells from end-stage cirrhotic livers from subjects with non-alcoholic steatohepatitis (NASH), chronic hepatitis C infection (HCV) and primary sclerosing cholangitis (PSC). Here, we show that although NK cells shared similar dysfunctions, the disease etiology impacts hepatic NK cell heterogeneity. Therapeutical strategies targeting NK cells for the prevention or treatment of fibrosis should consider liver disease etiology in their design.


Assuntos
Hepatite C Crônica , Cirrose Hepática , Humanos , Cirrose Hepática/etiologia , Células Matadoras Naturais , Fibrose
6.
J Surg Oncol ; 127(7): 1187-1195, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36938777

RESUMO

BACKGROUND AND OBJECTIVES: Melanoma mutational burden is high and approximately 50% have oncogenic mutations in BRAF. We sought to evaluate age-related mutational differences in melanoma. METHODS: We analyzed melanoma samples in the Genomics Evidence Neoplasia Information Exchange database. Targetable mutations were identified using the Precision Oncology Knowledge Base (OncoKB). RESULTS: We found 1194 patients with a common set of 30 genes. The top mutated genes in patients <40 years old (y/o) (n = 98) were BRAF (59%), TP53 (31%), NRAS (17%), and PTEN (14%); in 40-59 y/o (n = 354) were BRAF (51%), NRAS (30%), TP53 (26%), and APC (13%); and in ≥60 y/o (n = 742) were BRAF (38%), NRAS (33%), TP53 (26%), and KDR (19%). BRAF mutations were almost mutually exclusive from NRAS mutations in <40 y/o (58/59). Mutational burden increased with age, with means of 2.39, 2.92, and 3.67 mutations per sample in patients <40, 40-59, and ≥60 y/o, respectively (p < 0.0001). There were 10 targetable mutations meeting OncoKB criteria for melanoma: BRAF (level 1), RET (level 1), KIT (level 2), NRAS (level 3A), TP53 (level 3A), and FGFR2, MET, PTEN, PIK3CA, and KRAS (level 4). CONCLUSIONS: Mutations in melanoma have age-related differences and demonstrates potential targetable mutations for personalized therapies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Adulto , Proteínas Proto-Oncogênicas B-raf/genética , Medicina de Precisão , Melanoma/genética , Mutação , Sequenciamento de Nucleotídeos em Larga Escala , Análise Mutacional de DNA , Neoplasias Cutâneas/genética
7.
Front Immunol ; 13: 968366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159810

RESUMO

Excessive dietary cholesterol is preferentially stored in the liver, favoring the development of nonalcoholic steatohepatitis (NASH), characterized by progressive hepatic inflammation and fibrosis. Emerging evidence indicates a critical contribution of hepatic macrophages to NASH severity. However, the impact of cholesterol on these cells in the setting of NASH remains elusive. Here, we demonstrate that the dietary cholesterol content directly affects hepatic macrophage global gene expression. Our findings suggest that the modifications triggered by prolonged high cholesterol intake induce long-lasting hepatic damage and support the expansion of a dysfunctional pro-fibrotic restorative macrophage population even after cholesterol reduction. The present work expands the understanding of the modulatory effects of cholesterol on innate immune cell transcriptome and may help identify novel therapeutic targets for NASH intervention.


Assuntos
Hipercolesterolemia , Hepatopatia Gordurosa não Alcoólica , Animais , Colesterol/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Modelos Animais de Doenças , Humanos , Macrófagos , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
PLoS Pathog ; 17(8): e1009799, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34370798

RESUMO

Chronic infection with HCV is manifested by dysregulation of innate immune responses and impaired T cell function at multiple levels. These changes may impact susceptibility to other infections, responsiveness to antiviral therapies, vaccine responsiveness, and development of complications such as hepatocellular carcinoma. Highly effective direct-acting antiviral (DAA) therapy has revolutionized the management of chronic HCV, with expected cure rates exceeding 95%. DAA treatment represents a unique opportunity to investigate to what extent elimination of viral replication and chronic antigen stimulation can restore immunologic phenotype. In this study we interrogated the global transcriptional profile of isolated peripheral blood T cells before, during and after IFN-free DAA therapy using single-cell mRNA sequencing. Our results demonstrate that T cells mapped at single-cell resolution have dramatic transcriptomic changes early after initiation of DAA and many of these changes are sustained after completion of DAA therapy. Specifically, we see a significant reduction in transcripts associated with innate immune activation and interferon signaling such as ISG15, ISG20, IFIT3, OAS and MX1 in many different T cell subsets. Furthermore, we find an early upregulation of a gene involved in suppression of immune activation, DUSP1, in circulating T cells. Conclusion: This study provides the first in-depth transcriptomic analysis at the single-cell level of patients undergoing DAA therapy, demonstrating that IFN-free antiviral therapy in chronic HCV infection induces hitherto unrecognized shifts in innate immune and interferon signaling within T cell populations early, during, and long-term after treatment. The present study provides a rich data source to explore the effects of DAA treatment on bulk T cells.


Assuntos
Antivirais/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatite C Crônica/genética , Interferons/genética , Análise de Célula Única/métodos , Subpopulações de Linfócitos T/metabolismo , Transcriptoma/efeitos dos fármacos , Biomarcadores/sangue , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Humanos , Interferons/metabolismo , Masculino , Estudos Prospectivos , Subpopulações de Linfócitos T/efeitos dos fármacos
9.
Front Oncol ; 11: 681476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221999

RESUMO

Triple-negative breast cancer (TNBC) is a highly heterogeneous disease defined by the absence of estrogen receptor (ER) and progesterone receptor (PR) expression, and human epidermal growth factor receptor 2 (HER2) overexpression that lacks targeted treatments, leading to dismal clinical outcomes. Thus, better stratification systems that reflect intrinsic and clinically useful differences between TNBC tumors will sharpen the treatment approaches and improve clinical outcomes. The lack of a rational classification system for TNBC also impacts current and emerging therapeutic alternatives. In the past years, several new methodologies to stratify TNBC have arisen thanks to the implementation of microarray technology, high-throughput sequencing, and bioinformatic methods, exponentially increasing the amount of genomic, epigenomic, transcriptomic, and proteomic information available. Thus, new TNBC subtypes are being characterized with the promise to advance the treatment of this challenging disease. However, the diverse nature of the molecular data, the poor integration between the various methods, and the lack of cost-effective methods for systematic classification have hampered the widespread implementation of these promising developments. However, the advent of artificial intelligence applied to translational oncology promises to bring light into definitive TNBC subtypes. This review provides a comprehensive summary of the available classification strategies. It includes evaluating the overlap between the molecular, immunohistochemical, and clinical characteristics between these approaches and a perspective about the increasing applications of artificial intelligence to identify definitive and clinically relevant TNBC subtypes.

10.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34117054

RESUMO

The current opioid epidemic warrants a better understanding of genetic and environmental factors that contribute to opioid addiction. Here we report an increased prevalence of vitamin D (VitD) deficiency in patients diagnosed with opioid use disorder and an inverse and dose-dependent association of VitD levels with self-reported opioid use. We used multiple pharmacologic approaches and genetic mouse models and found that deficiencies in VitD signaling amplify exogenous opioid responses that are normalized upon restoration of VitD signaling. Similarly, physiologic endogenous opioid analgesia and reward responses triggered by ultraviolet (UV) radiation are repressed by VitD signaling, suggesting that a feedback loop exists whereby VitD deficiency produces increased UV/endorphin-seeking behavior until VitD levels are restored by cutaneous VitD synthesis. This feedback may carry the evolutionary advantage of maximizing VitD synthesis. However, unlike UV exposure, exogenous opioid use is not followed by VitD synthesis (and its opioid suppressive effects), contributing to maladaptive addictive behavior.


Assuntos
Endorfinas , Transtornos Relacionados ao Uso de Opioides , Deficiência de Vitamina D , Analgésicos Opioides/farmacologia , Animais , Humanos , Camundongos , Vitamina D/farmacologia , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Vitaminas
11.
Front Immunol ; 12: 671073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012454

RESUMO

The liver is the central organ for cholesterol synthesis and homeostasis. The effects of dietary cholesterol on hepatic injury, mainly of oxidized low-density lipoproteins (OxLDL), are not fully understood. Here, we show that the degree of cholesterol oxidation had different impacts on the global gene expression of human M2-like macrophages, with highly oxidized LDL causing the most dramatic changes. M2-like macrophages and Kupffer cells undergo M4-like polarization, decreasing the expression of important markers, such as IL10, MRC1, and CD163. These cells also displayed functional changes, with reduced phagocytic capacity, increased neutrophil recruitment, and more effective neutrophil extracellular traps (NETs) induction. Our findings provide a link between LDL oxidation and modification of peripheral and liver macrophage function.


Assuntos
Colesterol/metabolismo , Armadilhas Extracelulares/metabolismo , Células de Kupffer/imunologia , Macrófagos/imunologia , Neutrófilos/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Interleucina-10/metabolismo , Glicoproteínas de Membrana , Fagocitose , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos
12.
Cancers (Basel) ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349217

RESUMO

This study examined the role of the ubiquitin E3-ligase RNF123 in modulating downstream NF-κB1 targets in glioblastoma (GB) tumor progression. Our findings revealed an oncogenic pathway (miR-155-5p-RNF123-NF-κB1-p50-SerpinE1) that may represent a new therapeutic target pathway for GB patients with isocitrate dehydrogenase 1 and 2 (IDH) WT (wild type). Mechanistically, we demonstrated that RNF123 is downregulated in IDH WT GB patients and leads to the reduction of p50 levels. RNA-sequencing, reverse-phase protein arrays, and in vitro functional assays on IDH WT GB cell lines with RNF123 overexpression showed that SerpinE1 was a downstream target that is negatively regulated by RNF123. SERPINE1 knockdown reduced the proliferation and invasion of IDH WT GB cell lines. Both SerpinE1 and miR-155-5p overexpression negatively modulated RNF123 expression. In clinical translational analysis, RNF123, SerpinE1, and miR-155-5p were all associated with poor outcomes in GB patients. Multivariable analysis in IDH WT GB patients showed that concurrent low RNF123 and high SerpinE1 was an independent prognostic factor in predicting poor overall survival (p < 0.001, hazard ratio (HR) = 2.93, 95% confidence interval (CI) 1.7-5.05), and an increased risk of recurrence (p < 0.001, relative risk (RR) = 3.56, 95% CI 1.61-7.83).

13.
Clin Chem ; 66(1): 169-177, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672856

RESUMO

BACKGROUND: Blood molecular profiling of circulating tumor cells (CTCs) can enable monitoring of patients with metastatic melanoma during checkpoint inhibitor immunotherapy (CII) and in combination with targeted therapies. We developed a microfluidics-based CTC platform to explore CTC profiling utility in CII-treated patients with melanoma using a melanoma messenger RNA (mRNA)/DNA biomarker panel. METHODS: Blood samples (n = 213) were collected prospectively from 75 American Joint Committee on Cancer-staged III/IV melanoma patients during CII treatment and those enriched for CTCs. CTC profiling was performed using 5 known melanoma mRNA biomarkers and BRAF V600E DNA mutation. CTC biomarker status associations with clinical outcomes were assessed. RESULTS: CTCs were detected in 88% of blood samples from patients with melanoma. CTC-derived biomarkers and clinical variables analyzed using classification and regression tree analysis revealed that a combination of lactate dehydrogenase, CTC-mRNA biomarkers, and tumor BRAF-mutation status was indicative of clinical outcomes for patients with stage IV melanoma (n = 52). The panel stratified low-risk and high-risk patients, whereby the latter had poor disease-free (P = 0.03) and overall survival (P = 0.02). Incorporation of a DNA biomarker with mRNA profiling increased overall CTC-detection capability by 57% compared to mRNA profiling only. RNA sequencing of isolated CTCs identified significant catenin beta 1 (CTNNB1) overexpression (P <0.01) compared to nondisease donor blood. CTC-CTNNB1 was associated with progressive disease/stable disease compared to complete-responder patient status (P = 0.02). Serial CTC profiling identified subclinical disease in patients who developed progressive disease during treatment/follow-up. CONCLUSIONS: CTC-derived mRNA/DNA biomarkers have utility for monitoring CII, targeted, and combinatorial therapies in metastatic melanoma patients.


Assuntos
Melanoma/terapia , Células Neoplásicas Circulantes/metabolismo , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Intervalo Livre de Doença , Feminino , Humanos , Imunoterapia , Estimativa de Kaplan-Meier , Masculino , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Estudos Prospectivos , Proteínas Proto-Oncogênicas B-raf/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Regulação para Cima , beta Catenina/genética , beta Catenina/metabolismo
14.
Ann Surg Oncol ; 26(10): 3185-3193, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31342395

RESUMO

BACKGROUND: Pathological response to neoadjuvant chemotherapy (NAC) is critical in prognosis and selection of systemic treatments for patients with triple-negative breast cancer (TNBC). The aim of this study is to identify gene expression-based markers to predict response to NAC. PATIENTS AND METHODS: A survey of 43 publicly available gene expression datasets was performed. We identified a cohort of TNBC patients treated with NAC (n = 708). Gene expression data from different studies were renormalized, and the differences between pretreatment (pre-NAC), on-treatment (post-C1), and surgical (Sx) specimens were evaluated. Euclidean statistical distances were calculated to estimate changes in gene expression patterns induced by NAC. Hierarchical clustering and pathway enrichment analyses were used to characterize relationships between differentially expressed genes and affected gene pathways. Machine learning was employed to refine a gene expression signature with the potential to predict response to NAC. RESULTS: Forty nine genes consistently affected by NAC were involved in enhanced regulation of wound response, chemokine release, cell division, and decreased programmed cell death in residual invasive disease. The statistical distances between pre-NAC and post-C1 significantly predicted pathological complete response [area under the curve (AUC) = 0.75; p = 0.003; 95% confidence interval (CI) 0.58-0.92]. Finally, the expression of CCND1, a cyclin that forms complexes with CDK4/6 to promote the cell cycle, was the most informative feature in pre-NAC biopsies to predict response to NAC. CONCLUSIONS: The results of this study reveal significant transcriptomic changes induced by NAC and suggest that chemotherapy-induced gene expression changes observed early in therapy may be good predictors of response to NAC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia Neoadjuvante/métodos , Transcriptoma , Neoplasias de Mama Triplo Negativas/patologia , Área Sob a Curva , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
15.
Ann Surg Oncol ; 26(10): 3344-3353, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31342401

RESUMO

BACKGROUND/OBJECTIVE: Triple-negative breast cancer (TNBC) is a heterogeneous collection of breast tumors with numerous differences including morphological characteristics, genetic makeup, immune-cell infiltration, and response to systemic therapy. DNA methylation profiling is a robust tool to accurately identify disease-specific subtypes. We aimed to generate an epigenetic subclassification of TNBC tumors (epitypes) with utility for clinical decision-making. METHODS: Genome-wide DNA methylation profiles from TNBC patients generated in the Cancer Genome Atlas project were used to build machine learning-based epigenetic classifiers. Clinical and demographic variables, as well as gene expression and gene mutation data from the same cohort, were integrated to further refine the TNBC epitypes. RESULTS: This analysis indicated the existence of four TNBC epitypes, named as Epi-CL-A, Epi-CL-B, Epi-CL-C, and Epi-CL-D. Patients with Epi-CL-B tumors showed significantly shorter disease-free survival and overall survival [log rank; P = 0.01; hazard ratio (HR) 3.89, 95% confidence interval (CI) 1.3-11.63 and P = 0.003; HR 5.29, 95% CI 1.55-18.18, respectively]. Significant gene expression and mutation differences among the TNBC epitypes suggested alternative pathway activation that could be used as ancillary therapeutic targets. These epigenetic subtypes showed complementarity with the recently described TNBC transcriptomic subtypes. CONCLUSIONS: TNBC epigenetic subtypes exhibit significant clinical and molecular differences. The links between genetic make-up, gene expression programs, and epigenetic subtypes open new avenues in the development of laboratory tests to more efficiently stratify TNBC patients, helping optimize tailored treatment approaches.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/patologia , Carcinoma Medular/patologia , Epigenômica , Transcriptoma , Neoplasias de Mama Triplo Negativas/patologia , Carcinoma Ductal de Mama/classificação , Carcinoma Ductal de Mama/genética , Carcinoma Lobular/classificação , Carcinoma Lobular/genética , Carcinoma Medular/classificação , Carcinoma Medular/genética , Metilação de DNA , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Prognóstico , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/genética
16.
Epigenet Insights ; 12: 2516865719840284, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30968063

RESUMO

DNA methylation profiling has proven to be a powerful analytical tool, which can accurately identify the tissue of origin of a wide range of benign and malignant neoplasms. Using microarray-based profiling and supervised machine learning algorithms, we and other groups have recently unraveled DNA methylation signatures capable of aiding the histomolecular diagnosis of different tumor types. We have explored the methylomes of metastatic brain tumors from patients with lung cancer, breast cancer, and cutaneous melanoma and primary brain neoplasms to build epigenetic classifiers. Our brain metastasis methylation (BrainMETH) classifier has the ability to determine the type of brain tumor, the origin of the metastases, and the clinical-therapeutic subtype for patients with breast cancer brain metastases. To facilitate the translation of these epigenetic classifiers into clinical practice, we selected and validated the most informative genomic regions utilizing quantitative methylation-specific polymerase chain reaction (qMSP). We believe that the refinement, expansion, integration, and clinical validation of BrainMETH and other recently developed epigenetic classifiers will significantly contribute to the development of more comprehensive and accurate systems for the personalized management of patients with brain metastases.

17.
Cancer Res ; 79(4): 760-772, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30563893

RESUMO

Recent insights supporting the fallopian tube epithelium (FTE) and serous tubal intraepithelial carcinomas (STIC) as the tissue of origin and the precursor lesion, respectively, for the majority of high-grade serous ovarian carcinomas (HGSOC) provide the necessary context to study the mechanisms that drive the development and progression of HGSOC. Here, we investigate the role of the E3 ubiquitin ligase RNF20 and histone H2B monoubiquitylation (H2Bub1) in serous tumorigenesis and report that heterozygous loss of RNF20 defines the majority of HGSOC tumors. At the protein level, H2Bub1 was lost or downregulated in a large proportion of STIC and invasive HGSOC tumors, implicating RNF20/H2Bub1 loss as an early event in the development of serous ovarian carcinoma. Knockdown of RNF20, with concomitant loss of H2Bub1, was sufficient to enhance cell migration and clonogenic growth of FTE cells. To investigate the mechanisms underlying these effects, we performed ATAC-seq and RNA-seq in RNF20 knockdown FTE cell lines. Loss of RNF20 and H2Bub1 was associated with a more open chromatin conformation, leading to upregulation of immune signaling pathways, including IL6. IL6 was one of the key cytokines significantly upregulated in RNF20- and H2Bub1-depleted FTE cells and imparted upon these cells an enhanced migratory phenotype. These studies provide mechanistic insight into the observed oncogenic phenotypes triggered by the early loss of H2Bub1. SIGNIFICANCE: Loss of RNF20 and H2Bub1 contributes to transformation of the fallopian tube epithelium and plays a role in the initiation and progression of high-grade serous ovarian cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/4/760/F1.large.jpg.


Assuntos
Cromatina/metabolismo , Cistadenocarcinoma Seroso/patologia , Neoplasias das Tubas Uterinas/patologia , Histonas/metabolismo , Neoplasias Ovarianas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Proliferação de Células , Cromatina/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Progressão da Doença , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , Transdução de Sinais , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genética
18.
Mol Biol Evol ; 36(2): 239-251, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445510

RESUMO

The mutational process varies at many levels, from within genomes to among taxa. Many mechanisms have been linked to variation in mutation, but understanding of the evolution of the mutational process is rudimentary. Physiological condition is often implicated as a source of variation in microbial mutation rate and may contribute to mutation rate variation in multicellular organisms.Deleterious mutations are an ubiquitous source of variation in condition. We test the hypothesis that the mutational process depends on the underlying mutation load in two groups of Caenorhabditis elegans mutation accumulation (MA) lines that differ in their starting mutation loads. "First-order MA" (O1MA) lines maintained under minimal selection for ∼250 generations were divided into high-fitness and low-fitness groups and sets of "second-order MA" (O2MA) lines derived from each O1MA line were maintained for ∼150 additional generations. Genomes of 48 O2MA lines and their progenitors were sequenced. There is significant variation among O2MA lines in base-substitution rate (µbs), but no effect of initial fitness; the indel rate is greater in high-fitness O2MA lines. Overall, µbs is positively correlated with recombination and proximity to short tandem repeats and negatively correlated with 10 bp and 1 kb GC content. However, probability of mutation is sufficiently predicted by the three-nucleotide motif alone. Approximately 90% of the variance in standing nucleotide variation is explained by mutability. Total mutation rate increased in the O2MA lines, as predicted by the "drift barrier" model of mutation rate evolution. These data, combined with experimental estimates of fitness, suggest that epistasis is synergistic.


Assuntos
Evolução Biológica , Caenorhabditis elegans/genética , Carga Genética , Mutação , Animais , Variações do Número de Cópias de DNA , Aptidão Genética , Repetições de Microssatélites , Recombinação Genética , Seleção Genética
19.
Int J Cancer ; 144(4): 802-817, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29992556

RESUMO

Melanoma has the highest propensity to metastasize to the brain compared to other cancers, as brain metastases are found frequently high in patients who have prolonged survival with visceral metastasis. Once disseminated in the brain, melanoma cells communicate with brain resident cells that include astrocytes and microglia. Microglia cells are the resident macrophages of the brain and are the main immunological cells in the CNS involved in neuroinflammation. Data on the interactions between brain metastatic melanoma cells and microglia and on the role of microglia-mediated neuroinflammation in facilitating melanoma brain metastasis are lacking. To elucidate the role of microglia in melanoma brain metastasis progression, we examined the bidirectional interactions between microglia and melanoma cells in the tumor microenvironment. We identified the molecular and functional modifications occurring in brain-metastasizing melanoma cells and microglia cells after the treatment of each cell type with supernatants of the counter cell type. Both cells induced alteration in gene expression programs, cell signaling, and cytokine secretion in the counter cell type. Moreover, melanoma cells exerted significant morphological changes on microglia cells, enhanced proliferation, induced matrix metalloproteinase-2 (MMP-2) activation, and cell migration. Microglia cells induced phenotypic changes in melanoma cells increasing their malignant phenotype: increased melanoma proliferation, MMP-2 activity, cell migration, brain endothelial penetration, and tumor cells ability to grow as spheroids in 3D cultures. Our work provides a novel insight into the bidirectional interactions between melanoma and micoglia cells, suggesting the contribution of microglia to melanoma brain metastasis formation.


Assuntos
Neoplasias Encefálicas/genética , Melanoma/genética , Microglia/metabolismo , Neoplasias Cutâneas/genética , Microambiente Tumoral/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Comunicação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos Nus , Microglia/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Transplante Heterólogo
20.
Sci Data ; 5: 180245, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398472

RESUMO

Brain metastases (BM) are one the most lethal and poorly managed clinical complications in cancer patients. These secondary tumors represent the most common intracranial neoplasm in adults, most frequently originating from lung cancer, breast cancer, and cutaneous melanoma. In primary brain tumors, such as gliomas, recent advances in DNA methylation profiling have allowed for a comprehensive molecular classification. Such data provide prognostic information, in addition to helping predict patient response to specific systemic therapies. However, epigenetic alterations of metastatic brain tumors with specific biological and translational relevance still require much further exploration. Using the widely employed Illumina Infinium HumanMethylation 450K platform, we have generated a cohort of genome-wide DNA methylomes from ninety-six needle-dissected BM specimens from patients with lung cancer, breast cancer, and cutaneous melanoma with clinical, pathological, and demographic annotations. This resource offers an unprecedented and unique opportunity to identify novel DNA methylation features influencing the behavior of brain metastasis, and thus accelerate the discovery of BM-specific theranostic epigenetic alterations.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Epigenômica , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/secundário , DNA de Neoplasias , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica/genética , Metástase Neoplásica/fisiopatologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...